Thickeners \& Clarifiers

Standard product range

The standard product range is as follows:
Drive Mechanisms

- Type BL or BN for installation on Bridge type structures
- Minimum - Size 10 Mechanism with 32,000 Nm cutoff torque
- Maximum - Size 40 Mechanism with $1,100,000 \mathrm{Nm}$ cut-off torque
- Type CL or CN for installation on Pier type structures
- Minimum CN Type - Size 20 with 190,000 Nm cut-off torque
- Minimum CL Type - Size 24 with 310,000 Nm cut-off torque
- Maximum - Size 40 Mechanism with 1,100,000 Nm cut-off torque

Superstructures

- Full diameter bridge type up to 40 metres diameter
- All Bridges to be truss type design
- Centre Pier type with half diameter access superstructure for all tanks larger than 40 m diameter
- Up to 12 m superstructure to be beam type
- from 12 m to 25 m superstructure to be castellated beam type
- over 25 m superstructure will be truss type

Rakes

- up to 15 m tank diameter, Rakes to be beam type with tie-rods
- over 15 m tank diameter, Rakes to be truss type

Options

The complete range of Metso driveheads are avaliable as both lift and non-lift designs. Rake height indication and remote indication of rake height and rake torque are available.

Drive mechanism and controls

The new drive mechanism range has been developed to improve torque capacity, reduce costs and rationalize component parts.

The main advantages of this range of drive heads can be summarized as follows.

Proven design extended to all drive head sizes

- Substantial slewing ring main bearing used for all sizes of drive heads. This bearing accommodates all tipping moments from rake system without affecting wormwheel alignment, thus further extending worm and wormwheel life.
- Designs available for both bridge and centre pier mounting.
Increased torque capacity.
Main wormwheel machined from centrifugally cast phosphor bronze for maximum wear life and torque capacity.
Reliable and adjustable torque sensing
Torque sensing by electronic main drive slip sensor with fixed high torque alarm and motor cut off values but with adjustable rake raise torque value. This gives great control over the thickener or clarifier operation.
Improved design for easier maintenance
In-drive system consists of in-line, high efficiency epicyclic gearbox and main motor. Torque tower and telescopic pier redesigned, giving easier inspection of torque keys.

Standard mechanism range

The standard range of sizes and designs for the Metso Drive mechanism is shown in the table below. The CL and CN range do not exist below the Size 20 mechanism as it is not envisaged that the centre pier design will be used with these smaller drive mechanisms.

DRIVE HEAD	DESIGN OPTIONS	10YEAR LIFE TORQUE, Nm	CUT-OUT TORQUE, Nm	PEAK TORQUE Nm
10	BL, BN Only	10,000	32,000	75,000
12	BL, BN Only	17,000	45,000	116,000
14	BL, BN Only	26,000	72,000	175,000
17	BL, BN Only	45,000	120,000	270,000
20	BL, BN, CN Only	65,000	190,000	400,000
24	BL, BN,CL,CN	112,000	310,000	650,000
28	BL, BN, CL,CN	164,000	450,000	920,000
32	BL, BN,CL,CN	225,000	610,000	$1,170,000$
36	$B L, B N, C L, C N$	301,000	800,000	$1,530,000$
40	$B L, B N, C L, C N$	397,000	$1,100,000$	$2,000,000$

Diameter		Area	
(m)	(ft)	$\left(\mathrm{m}^{2}\right)$	$\left(\mathrm{ft}^{2}\right)$
10	33	78	839
12	39	113	1216
14	46	154	1658
16	52	201	2164
18	59	254	2734
20	66	314	3380
22	72	380	4090
24	79	452	4865
26	85	531	5716
28	92	616	6631
30	98	706	7599
32	105	804	8654
34	111	908	9773
36	118	1018	10958
38	125	1134	12206
40	131	1257	13530
42	138	1385	14913
44	144	1521	16367

Diameter		Area	
(m)	(ft)	$\left(\mathrm{m}^{2}\right)$	$\left(\mathrm{ft}^{2}\right)$
40	131	1257	13530
42	138	1385	14913
44	144	1521	16367
46	151	1662	17889
48	157	1810	19479
50	164	1963	21130
52	170	2124	22860
54	177	2290	24653
56	184	2463	26512
58	190	2642	28440
60	197	2827	30430

